EMPIRICAL REGRESSION QUANTILE AND LEVERAGE TREATMENT METHOD
نویسندگان
چکیده
منابع مشابه
Empirical Regression Quantile
This study proposes a new use of goal programming for empirically estimating a regression quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not only non-Gaussian error distribut.ions but also a small sample size t.han conventional regression quantile methods. The performance of regression quantile estimates is compared with least absolute value...
متن کاملQuantile Regression for Residual Life and Empirical Likelihood
This approach has several advantages: (1) there is no need to estimate the variance/covariance at all, which may become prohibitively complicated for other procedures that requires the estimation of such. (2) When inverting the tests to obtain confidence regions/intervals, this procedure inherits all the good properties of a likelihood ratio test. (3) Free software implementation of the test is...
متن کاملEXTREMAL QUANTILE REGRESSION 3 quantile regression
Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...
متن کاملEmpirical likelihood estimation of the spatial quantile regression
The spatial quantile regression model is a useful and flexible model for analysis of empirical problems with spatial dimension. This paper introduces an alternative estimator for this model. The properties of the proposed estimator are discussed in a comparative perspective with regard to the other available estimators. Simulation evidence on the small sample properties of the proposed estimato...
متن کاملSmoothed Empirical Likelihood Methods for Quantile Regression Models
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood. We show that the smoothed empirical likelihood (SEL) estimator is first-order asymptotically equival...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operations Research Society of Japan
سال: 1995
ISSN: 0453-4514,2188-8299
DOI: 10.15807/jorsj.38.34